Recombinant human GM-CSF protein (Qk076)

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor involved in the differentiation and activation of monocytes such as macrophages and dendritic cells, and granulocytes such as neutrophils, eosinophils, and basophils. It is also involved in the development of erythroid, megakaryocytes, and keratinocytes. GM-CSF binds to the GM-CSF receptor (CSF2R) and activates the JAK2/ STAT-5, Ras/ ERK, NF-kB, and PI3K pathways.

It is commonly used in cell culture to stimulate the differentiation and maturation of human-induced pluripotent stem cells or peripheral blood monocytes to myeloid cells. GM-CSF can also increase the glycolytic activity of macrophages and promote an M1 polarization.

Human GM-CSF is composed of 144 amino acids with a molecular weight of 14.6 kDa. This protein is animal-free, carrier protein-free, tag-free, and non-glycosylated to ensure a homogenous population with exceptional lot-to-lot consistency. Qk076 is suitable for reproducible and high-quality neutrophils and other relevant cell cultures.

Orders are typically shipped same or next day (except Friday).
Easy world-wide ordering, direct or through our distributors.

1000µg will be despatched as 2 x 500µg

Buy online with secure credit card or purchase order or email orders@qkine.com
Bulk and stock reservation available

Summary

  • High purity human protein (Uniprot number: P04141)

  • >98%, by SDS-PAGE quantitative densitometry

  • Source: Expressed in E. coli

  • 14.6 kDa, monomer

  • Animal-free (AOF) and carrier protein-free

  • Manufactured in Cambridge, UK

  • Lyophilized from acetonitrile/TFA

  • Resuspend in water at >100 µg/ml, prepare single-use aliquots, add carrier protein if desired, and store frozen at -20°C or -80°C

Featured applications

  • Generation of iPSC-derived granulocytes

  • Differentiation of peripheral blood monocytes to myeloid lineages

  • Polarization of macrophages

  • Generation of immature dendritic cells

  • Differentiation of stem cells into erythrocytes and megakaryocytes

  • Asymmetric stem cell self-renewal in human keratinocytes

Granulocyte macrophage colony-stimulating factor, GM-CSF, Colony Stimulating Factor-2, CSF-2, MGI-1GM, Pluripoietin-alpha, Molgramostin, Sargramostim, MGC131935, MGC138897

1. Lotfi, N. et al. Roles of GM-CSF in the pathogenesis of autoimmune diseases: An update. Front Immunol 10, 1265 (2019).

2. Lee, K. M. C., Achuthan, A. A. & Hamilton, J. A. GM-CSF: A Promising Target in Inflammation and Autoimmunity. Immunotargets Ther 9, 225 (2020).

3. Burgess, A. W. & Metcalf, D. The Nature and Action of Granulocyte-Macrophage Colony Stimulating Factors. Blood 56, 947–958 (1980).

4. Robinson, B. E., McGrath, H. E. & Quesenberry, P. J. Recombinant murine granulocyte macrophage conoly-stimulating factor has megakaryocyte colony-stimulating activity and augments megakaryocyte colony stimulation by interleukin 3. Journal of Clinical Investigation 79, 1648–1652 (1987).

5. Hamilton, J. A. Cytokines Focus GM-CSF in inflammation. Journal of Experimental Medicine 217, (2019).

6. Hamilton, J. A., Stanley, E. R., Burgess, A. W. & Shadduck, R. K. Stimulation of macrophage plasminogen activator activity by colony-stimulating factors. J Cell Physiol 103, 435–445 (1980).

7. Hansen, G. et al. The Structure of the GM-CSF Receptor Complex Reveals a Distinct Mode of Cytokine Receptor Activation. Cell 134, 496–507 (2008).

8. Breen, F. N., Hume, D. A. & Weidemann, M. J. Interactions among granulocyte-macrophage colony-stimulating factor, macrophage colony-stimulating factor, and IFN-gamma lead to enhanced proliferation of murine macrophage progenitor cells. The Journal of Immunology 147, 1542–1547 (1991).

9. Caracciolo, D. et al. Recombinant human macrophage colony-stimulating factor (M-CSF) requires subliminal concentrations of granulocyte/macrophage (GM)-CSF for optimal stimulation of human macrophage colony formation in vitro. Journal of Experimental Medicine 166, 1851–1860 (1987).

10. Kurzrock, R. Granulocyte-macrophage colony-stimulating factor. (2003).

11. Ponomarev, E. D. et al. GM-CSF Production by Autoreactive T Cells Is Required for the Activation of Microglial Cells and the Onset of Experimental Autoimmune Encephalomyelitis. The Journal of Immunology 178, 39–48 (2007).

12. van Nieuwenhuijze, A. et al. GM-CSF as a therapeutic target in inflammatory diseases. Mol Immunol 56, 675–682 (2013).

13. Rios, F. J., Touyz, R. M. & Montezano, A. C. Isolation and differentiation of human macrophages. Methods in Molecular Biology 1527, 311–320 (2017).

14. Greter, M. et al. GM-CSF Controls Nonlymphoid Tissue Dendritic Cell Homeostasis but Is Dispensable for the Differentiation of Inflammatory Dendritic Cells. Immunity 36, 1031–1046 (2012).

15. Van De Laar, L., Coffer, P. J. & Woltman, A. M. Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy. Blood 119, 3383–3393 (2012).

16. Singh, P. et al. GM-CSF Enhances Macrophage Glycolytic Activity In Vitro and Improves Detection of Inflammation In Vivo. Journal of Nuclear Medicine 57, 1428 (2016).

17. Ying, W., Cheruku, P. S., Bazer, F. W., Safe, S. H. & Zhou, B. Investigation of Macrophage Polarization Using Bone Marrow Derived Macrophages. J Vis Exp 50323 (2013) doi:10.3791/50323.

18. Jin, X. & Kruth, H. S. Culture of Macrophage Colony-stimulating Factor Differentiated Human Monocyte-derived Macrophages. J Vis Exp 2016, 54244 (2016).

19. Mia, S., Warnecke, A., Zhang, X. M., Malmström, V. & Harris, R. A. An optimized Protocol for Human M2 Macrophages using M-CSF and IL-4/IL-10/TGF-β Yields a Dominant Immunosuppressive Phenotype. Scand J Immunol 79, 305 (2014).

20. Orekhov, A. N. et al. Monocyte differentiation and macrophage polarization. Vessel Plus 3, 10 (2019).

21. Yamane, K. & Leung, K. P. Rabbit M1 and M2 macrophages can be induced by human recombinant GM‐CSF and M‐CSF. FEBS Open Bio 6, 945 (2016).

22. Ohradanova-Repic, A., Machacek, C., Fischer, M. B. & Stockinger, H. Differentiation of human monocytes and derived subsets of macrophages and dendritic cells by the HLDA10 monoclonal antibody panel. Clin Transl Immunology 5, e55 (2016).

23. Obermaier, B. et al. Development of a new protocol for 2-day generation of mature dendritic cells from human monocytes. Biol Proced Online 5, 197 (2003).

24. Hubo, M. et al. Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells. Front Immunol 4, 43008 (2013).

25. Tanaka, M., Dykes, P. J. & Marks, R. Keratinocyte Growth Stimulation by Granulocyte acrophage Colony-stimulating Factor (GM-CSF). Keio J Med 46, 184–187 (1997).

26. Li, H. et al. IL-1α, IL-6, and GM-CSF Are Downstream Mediators of IL-17A that Promote Asymmetric Stem Cell Self-Renewal in Human Keratinocytes. Journal of Investigative Dermatology 141, 458-462.e3 (2021).

27. Cook, A. D. et al. Granulocyte macrophage colony-stimulating factor receptor α expression and its targeting in antigen-induced arthritis and inflammation. Arthritis Res Ther 18, (2016).

28. Louis, C. et al. NK cell–derived GM-CSF potentiates inflammatory arthritis and is negatively regulated by CIS. J Exp Med 217, (2020).

29. Saha, S. et al. Granulocyte–macrophage colony-stimulating factor expression in induced sputum and bronchial mucosa in asthma and COPD. Thorax 64, 671 (2009).

30. Molfino, N. A. et al. Phase 2, randomised placebo-controlled trial to evaluate the efficacy and safety of an anti-GM-CSF antibody (KB003) in patients with inadequately controlled asthma. BMJ Open 6, (2016).

31. Zhao, W., Zhao, G. & Wang, B. Revisiting GM-CSF as an adjuvant for therapeutic vaccines. Cellular & Molecular Immunology 2018 15:2 15, 187–189 (2017).

32. Hong, I. S. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Exp Mol Med 48, e242 (2016).

33. Kumar, A., Taghi Khani, A., Sanchez Ortiz, A. & Swaminathan, S. GM-CSF: A Double-Edged Sword in Cancer Immunotherapy. Front Immunol 13, (2022).

34. Armstrong, S., MacKenzie, J., Woodward, B., Pacey, A. & Farquhar, C. GM‐CSF (granulocyte macrophage colony‐stimulating factor) supplementation in culture media for women undergoing assisted reproduction. Cochrane Database Syst Rev 2020, (2020).

Bioactivity

GM-CSF-bioassay Qkine Qk076

GM-CSF activity is determined using proliferation of TF-1 human myeloid leukemia cells. EC50 = 52.5 ng/ml (3.6 nM).

Cells are treated in triplicate with a serial dilution of GM-CSF for 48 hours. Cell viability is measured using the CellTiter-Glo (Promega) luminescence assay. Data from Qk076 lot #204525.

Purity

Recombinant GM-CSF migrates as a major band at approximately 14.6 kDa in non-reducing (NR) ad reduced (R) conditions. No contaminating protein bands are present.

The purified recombinant protein (3 µg) was resolved using 15% w/v SDS-PAGE in reduced (+β-mercaptoethanol, R) and non-reduced conditions and stained with Coomassie Brilliant Blue R250. Data from Qk076 batch #204525.

Further quality assays

  • Mass spectrometry, single species with the expected mass

  • Endotoxin: <0.005 EU/μg protein (below the level of detection)

  • Recovery from stock vial: >95%

We are a company founded and run by scientists to provide a service and support innovation in stem cell biology and regenerative medicine.  All our products are exceptionally high purity, with complete characterisation and bioactivity analysis on every lot.

Protein background

Granulocyte-macrophage colony-stimulating factor (GM-CSF), or colony-stimulating factor 2 (CSF-2), is a secreted glycoprotein belonging to the hematopoietic family of growth factors. GM-CSF induces the development of myeloid, erythroid, and megakaryocytic cell lineages[1-4]. It plays a crucial role in the survival and recruitment of myeloid cells to inflammation sites and is also involved in regulating T-cell function [1,3,5-7]. Its role in the differentiation and proliferation of myeloid progenitors towards macrophages and dendritic cells was first identified, followed by its role as a cytokine during inflammation [1,3,5,6]. Other growth factors involved in monocyte/macrophage regulation include M-CSF and IFN-γ [8,9].

GM-CSF is a monomer composed of 144 amino acids with a molecular weight of approximately 14.6 kDa [10]. It is produced by various cells including activated T cells, B cells, macrophages, monocytes, mast cells, vascular endothelial cells, and fibroblasts [1,11]. GM-CSF binds to the GM-CSF receptor (GM-CSFR or CSF2R) expressed by myeloid cells and some non-hematopoietic cells [1,12]. This receptor is not present in lymphoid cells. GM-CSFR is composed of an α chain and β chain. The ternary complex of GM-CSF to GM-CSFR assembles into a dodecamer or higher-order complex and activates the downstream signaling pathways: JAK2/ STAT5, Ras/ ERK, NF-κB, and PI3K pathways [1,7].

GM-CSF is commonly used in cell culture with FGF-2 to stimulate the differentiation and maturation of human-induced pluripotent stem cells or peripheral blood monocytes to myeloid cells [13-15]. Myeloid cells include monocytes such as macrophages and dendritic cells, and granulocytes such as neutrophils, eosinophils, and basophils. The differentiation into macrophages is commonly performed using media supplemented with GM-CSF or M-CSF. GM-CSF and M-CSF can increase the glycolytic activity of macrophages, as well as influence their polarization and shape [16-19]. GM-CSF, along with Lipopolysaccharide and IFN-γ, favor an M1-polarized macrophage of a “fried-egg” shape [19-22]. In the case of dendritic cells, GM-CSF and IL-4 can generate immature dendric cells [23,24]. Further maturation is achieved using a mixture of IL-1β, IL-6, TNF-α, PGE2, and IL-10 [24]. Finally, GM-CSF is used as a growth factor to differentiate stem cells into erythrocytes and megakaryocytes with IL-3 as well as to stimulate and promote the self-renewal of keratinocytes [4,25,26].

GM-CSF is involved in the pathogenesis of several inflammatory and immune disorders such as asthma, rheumatoid arthritis, and multiple sclerosis [1,27-29]. As such, several preclinical models and clinical models have evaluated that GM-CSF may be a viable therapeutic target [2,30]. GM-CSF-based vaccines have been shown to enhance the immune response to vaccines by promoting the maturation and activation of dendritic cells in preclinical models [31]. GM-CSF has also been approved for patients with cancer undergoing chemotherapy as well as for bone marrow transplantation to stimulate the production of myeloid cells. However, further insights are needed on GM-CSF pro-tumorigenic effects to harness its therapeutic potential [32,33]. Finally, due to its role in embryonic development, GM-CSF has been proposed as a culture media supplement for in vitro fertilization where its potential and effectiveness will be confirmed with more randomized controlled trials [34].

Additional resources

Qkine GM-CSF Technote

Technote: GM-CSF

Our products are for research use only and not for diagnostic or therapeutic use.  Products are not for resale.

Share your thoughts!

Let us know what you think...

What others are saying

There are no contributions yet.

×

Login

Register


Your personal data will be used to support your experience throughout this website, to manage access to your account, and for other purposes described in our privacy policy.

Continue as a Guest

Don't have an account? Sign Up

Amazon gift voucher available for growth factor and cytokine reviews

Receive an Amazon gift voucher when you leave us a review.

£25, $30 or €30 for reviews with an image and £10, $15 or €15 for reviews without an image
Terms and conditions apply